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conductive at such high temperatures and partly be- 
cause of the difficulties in obtaining stable conductive 
coatings on the relatively porous ceramic disc. The 
latter inconvenience can, however, be overcome by 
shaping the condenser into a pressed tablet; inside 
this, two thin foils of platinum were placed with a 
thin layer of powder in between. Before pressing, a 
piece of platinum wire was welded to each foil to serve 
as electrical connexions. The measurement was made 
at 1 MHz with a Wayne Kerr transformer bridge. The 
preliminary measurement showed that the dielectric 
constant increases with temperatures up to ca. 1200°C 
where it reaches its peak and after which it decreases 
with further rise in temperature. Small anomalies were 
also observed at 700 and 850°C. The appearance of 
the curve indicates that the transition at 1170°C is 
either a ferroelectric to paraelectric transition or an 
antiferroelectric to paraelectric one. The fact that the 
tetragonal modification is of multiple cell type indicates 
an antiferroelectric modification since according to 
Megaw (1957) this is physically more likely than a 
ferroelectric for multiple cell perovskites. Resistivity 
data indicate that at temperatures above 1000°C the 
zirconate behaves as a semiconductor in the intrinsic 
range with a band gap of ~2.1 eV. No anomality in 
the electrical conductivity was detectable at the transition 
at 1170 °C. 

It is of interest to note that the predictions made by 
Krainik regarding crystallographic transformations of 
pure SrZrO3 are in good agreement with our findings. 
An extrapolation of Krainik's phase diagram to 100yo 
SrZrO3 shows that a transformation between a non- 
polar and a paraelectric phase should take place at ca. 
l l00°C;  this compares favourably with the one ex- 
perimentally found between the cubic and the pseudo- 
tetragonal phase at 1170 °C. Krainik's next transforma- 
tion found between the nonpolar phases was to occur 
at ca. 700 °C compared with our result between the two 
pseudotetragonal phases at 830°C. The lines in Krai- 
nik's phase diagram indicating the next transformation 
between a nonpolar and an antiferroelectric phase dis- 
plays no straight part, making an extrapolation im- 
possible. This transformation may correspond to the 

one at 700 °C between the pseudotetragonal and ortho- 
rhombic phases. The sequence of phase transitions of 
SrZrO3 shows marked differences compared with 
known features of other perovskites. If more than one 
tetragonal or pseudotetragonal phase appears, c/a 
values in other perovskites are generally both < 1 or 
both > 1. It is remarkable that the corresponding 
transformation in SrZrO3 goes from one phase with 
c/a < 1 to another with c/a > 1. 
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A new technique is developed for the perturbation of the coordinates of a structure away from a false 
least-squares minimum. The perturbation is a function of the accuracy of the individual components 
of the data. The technique could be used as an alternative method of refinement. 

Introduction 

The primary requirement of a well devised X-ray dif- 
fraction experiment is the collection of data, the indi- 

vidual components of which have a reasonably well 
defined error or standard deviation. Usually this in- 
formation is only used to devise a least-squares weight- 
ing scheme and there are no explicit constraints to fit 
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the calculated model to the data within the experi- 
mental errors. A question that should be asked is, does 
a calculated structure which has a low overall R index 
but a small number of structure factors that lie well 
outside the possible error limits for the observed struc- 
ture factors give a reasonable representation of the 
structure? The purpose of statistics, of which the least- 
squares process is a part, is to provide a basis for 
further action, and the purpose of this paper is to indi- 
cate a possible mathematical tool whereby the above 
question can be answered. The larger than expected 
calculated errors in the structure factors obtained from 
the model may be due to one of two causes. There 
may be some unallowed for physical effect on the ob- 
served or calculated data or they may have been pro- 
duced as a consequence of obtaining a mathematical 
minimum and be purely a mathematical artefact. If the 
former is the reason for the large error, and cannot 
be numerically corrected, then these structure factors 
can only be removed from subsequent refinement. If 
the latter is the reason then the model must be suf- 
ficiently perturbed so that they are brought within the 
expected experimental errors and refinement continued. 
They must not be removed from subsequent refinement. 

The recent work of Donohue & Goodman (1967) 
on an alternative minimum to that obtained by Nord- 
man & Schmitkons (1965) for the structure of adaman- 
tane shows the problem of false minima to be real. 
It is clear that the results of Donohue & Goodman 
give a better over-all fit to the observed data and also 
a more symmetric stereochemical model. 

Mathematical formulation 

Kitaigorodskii (1957) has suggested that an appro- 
priate measure of the accuracy of a structure deter- 
ruination is given by G, where 

X {IFo(h)l- IF~(h)l }2 
G 2 _ -  

Z IFo(h)l 2 

rather than the conventional R index 

R = _r IIFoqa)l-IF~(h)ll. 
ZlFo(h)l 

It is easy to show that G is independent of symmetry, 
whereas R is symmetry dependent, and for reasonably 
well refined structures G and R are numerically very 
similar. Kitaigorodskii also points out that a much 
more sensitive function is 

H 2 = ( {IF°(h)l-lFe(h)l}2 
IFo(h)12 ) "  

It is worth remembering that the usual least-squares 
refinement expression takes the form 

Z w~A 2 = Z -{IF°(h)l IFc(h) l} 2 

IFo0a)l 2 
for data obtained with a constant count technique (Kil- 
lean, 1967), assuming no systematic errors and negli- 

gible statistical setting errors. The use of this expression 
should militate against obtaining false minima which 
have some large values of 

II Fo(h)l -- IF~(h)l l 
IFo(h)l 

but it by no means assures that large values of this 
expression cannot be obtained. 

There is, however, a more novel approach to the 
problem which by its very nature assures that large 
values of this expression cannot be obtained. In the 
usual way consider a set of trial coordinates, r~, which 
define the ( p - 1 ) t h  set of calculated structure factors 
and their associated small incremental shifts, ar~, which 
define the pth set of calculated structure factors. 

Consider the most general form of the structure fac- 
tor equation and let the subscript p refer to the pth 
set of calculated structure factors. For the purposes of 
this paper it is not required to treat perturbations in 
the scale or thermal parameters but it is a simple alge- 
braic matter to include them if required. Under these 
conditions 

Ifc(h)l~= {Zjq(h) cos 2nh. ( r i+&d} 2 
i 

+ {Zj~(h) sin 2~zh. (rt+~3rt)} 2 
i 

~ If~(h)lg_l 

-2A(h)p-1 27 (2~rfi(h) sin 2~rh. ri)h. ~ri 
i 

+ 2B(h)~-i 27 (2~rJ~(h) cos 2~rh. ri)h. ~ri 
i 

and 

IFc~)l~ ~ IFe0a)l~-i 

- c o s  ~0(h)~0-1 Z" (2z~fi(h) sin 2z&. ri)h. 0r~ 
i 

+ sin ~0(h)~-i Z (2z0q(h) cos 2rch. ri)h. 0r~ 

where ~0(h) is the usual phase angle. But 

3~. p= IIFo0a)l- IFc(h)l~l 2 , 

and by substitution and rearrangement 

A~., = llFo0a)l- I Fc(h)~-ll 12 

-2{Aqa)~o-l-IFo~)l cos ~0~-1} 
Z (2zcfi(h) sin 2zth. r0h .  Ori 

+ 2{nqa)~,-1-1Fo(h)l sin (Pp-1} 

Z (2zcfi(h) cos 2z~h. r0h .  Ori 

which is linear in the variables Or,. 
The problem is now formulated as minimizing the 

linear quantity in 1Or, I 
Z w~d~.p>_O 

subject to linear constraints in 10r~l 
o < ~ . ,  < ~(h)  

where the z~(h) are assessed from the experimental ac- 
curacy. 
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Mathematical solution 

The neglecting of second and higher order terms in 
the expansion of 18r~l imposes a limitation on the al- 
lowed shifts if the formulation of the problem is to 
retain its physical meaning. This, of course, is the same 
restriction as applies to the least-squares technique 
where unfortunately it is not possible to allow for it. 
Let 

~3rt = 3xd + 3yd + 8zik,  

where, because of the restriction on the shifts, 

el,3 ~ 0zt ~__ --eL3. 

Define new variables, 

c~ui 
c~vi 

so that 

=c3x~+e~, 1 
=Oy~ "t- •i, 2 
= c3zt + ei, 3 

2e~, x > Ou~ > 0 
2ei, 2 --~ Ov~ __~ 0 
2e~, 3 > 8w~ > 0 .  

The problem is now one of optimization subject to 
a set of linear constriction with all variables being 
positive and was originally solved by Dantzig (1951). 
It is not necessary to outline the method of solving 
these inequalities to obtain a minimum in Z w~A 2. p as 
there can be few computers for which linear program- 
ming programs do not exist, such is its importance in 
the theory of economics. 

It is worth noting that there are numerous strategies 
for the use of this technique. It is by no means neces- 
sary to have one inequality for each structure factor 
and they could be grouped together to give inequalities 
for various regions of reciprocal space or for various 
ranges of intensity, always, of course, treating sep- 
arately those which had values wA 2 which differed 
appreciably from experimental prediction. 

Conclusion 

It has been shown that the linear programming tech- 
nique of minimizing the linearized function S w~A~ has 
certain advantages to offer in deciding the accuracy of 
a given structure model over that of the conventional 
least-squares technique which does not use the maxi- 
mum information derivable from the data. It is to be 
expected that for a refined structure using high quality 
data (z~(h) all small) the two techniques in the limit 
would give the same minima. It is dubious if this 
would be true if the z~(h) values are large. 
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Recent X-ray structure amplitude data for sodium chloride are divided into a consistent majority and 
an inconsistent minority by statistical methods. A set of mean value estimates of the structure amplitudes 
is derived from the consistent data. 

X-ray structure amplitudes (at room temperature) for 
sodium chloride have been measured many times in 
recent years (Table 1). Considerable differences occur, 
so that it is difficult to extract useful information about, 
say, the electron distribution and thermal motion in 
this alkali halide. The purpose of the present note is 
to compare the different experimental results for re- 
flexions with h 2 + k 2 + l 2 < 48 and to show that these 
results may be grouped into a consistent majority and 
an inconsistent minority. 

The comparison has been restricted to this range of 
low-order reflexions for several reasons. Firstly, the 
range is common to most experiments. Secondly, the 

experimental measurements of these low-order reflex- 
ions are not very sensitive to those differences in ex- 
perimental techniques which lead to different rates of 
fall-off, with angle, of the higher order reflexions. 
Thirdly, accurately known structure amplitudes for this 
range would provide a great deal of information about 
the electron distribution. With this in mind, a set of 
mean value estimates of the structure amplitudes has 
been derived from the consistent data and is presented 
in Table 3. 

Brief details of the data to be compared are given 
in Table 1 ; mosaic single-crystal data published before 
1952 have been excluded since, as Renninger (1952) 

A C 2 3 - 3  


